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ABSTRACT
To achieve device-free person detection, various types of signal
features, such as moving statistics and wavelet representations,
have been extracted from the Wi-Fi Received Signal Strength Index
(RSSI), whose value fluctuates when human subjects move near the
Wi-Fi transceivers. However, these features do not work effectively
under different deployments of Wi-Fi transceivers because each
transceiver has a unique RSSI fluctuation pattern that depends on its
specific wireless channel and hardware characteristics. To address
this problem, we present WiDet, a system that uses a deep Convo-
lutional Neural Network (CNN) approach for person detection. The
CNN achieves effective and robust detection feature extraction by
exploring distinguishable patterns in Wi-Fi RSSI data. With a large
number of internal parameters, the CNN can record and recognize
the different RSSI fluctuation patterns from different transceivers.
We further apply the data augmentation method to improve the
algorithm robustness to wireless interferences and pedestrian speed
changes. To take advantage of the wide availability of the existing
Wi-Fi devices, we design a collaborative sensing technique that can
recognize the subject moving directions. To validate the proposed
design, we implement a prototype system that consists of three
Wi-Fi packet transmitters and one receiver on low-cost off-the-shelf
embedded development boards. In a multi-day experiment with
a total of 163 walking events, WiDet achieves 94.5% of detection
accuracy in detecting pedestrians, which outperforms the moving
statistics and the wavelet representation based approaches by 22%
and 8%, respectively.
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1 INTRODUCTION
Mainstream Wi-Fi based device-free person detection systems rely
on either the Channel State Information (CSI) or the Received Sig-
nal Strength Index (RSSI) measurements. However, currently only
a small number of Wi-Fi adapter models support access to CSI,
which limits its ability for wide adoption. RSSI measurements are
easily accessible in most Wi-Fi devices, but it has been challenging
to extract effective and robust features for RSSI because different
Wi-Fi adapters generate different RSSI fluctuation patterns due to
their unique wireless channel and hardware characteristics. Specif-
ically, the Wi-Fi signal experiences various types of degradations,
including path loss, shadowing effect and multi-path effect, which
are dependent on the Wi-Fi transceiver deployment location and
the wireless channel of the environment. The RSSI measurements
on Wi-Fi transceivers are hardware dependent and discrepancies
exist even for devices from the same vendors [14]. As a result, as we
have seen in experiments, RSSI recorded on each Wi-Fi transceiver
fluctuates with a unique pattern. Many existing person detection
techniques that rely on hand-crafted signal features, such as wavelet
representation [21, 22] and moving statistics [31] based features.
However, the detection performance of these features degrades
when multiple different Wi-Fi links are used. It will be work inten-
sive to design specialized detection features for each Wi-Fi link.

We apply the machine learning technique to address the chal-
lenge of effective feature extraction. Recently, deep learning tech-
niques, Convolutional Network Networks (CNNs) in particular,
have achieved remarkable success in time series classification prob-
lems [13, 25]. The advantage of the CNN is that it can learn detection
features directly from the raw data samples. With a large number of
internal parameters, the CNN can record and recognize the unique
RSSI fluctuation patterns for all the different Wi-Fi transceivers. We
designed a CNN architecture that consists of multiple convolutional
layers, with each layer consisting of learnable filters that can detect
the occurrence of some specific signal patterns. The parameters in
the CNN are fine-tuned during the training phase using the back
propagation algorithm. The outputs of the stacked convolutional
layers are treated as features and are fed into a fully connected layer
that conducts classification. We further plot the Class Activation
Map (CAM) to interpret the specific patterns in the data that lead
to the final detection results.

To adequately train a CNN model, a sufficient training dataset
that includes all the common data variations is needed. In the sce-
nario of device-free person detection, one of the most common
types variations is the change of subject walking speeds. When
a person walks at different rates, the durations of the RSSI fluc-
tuations change accordingly. It will be time consuming to collect
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training data of all walking speeds. Instead, we apply the data aug-
mentation technique to expand the size of the training dataset [13].
The basic idea is to warp the data samples with different ratios to
mimic data changes caused by the variations of walking speeds.
Since the warped augmentation data can be generated based on
existing training dataset, we can improve the generability of the
CNN model without increasing the data collection efforts. Another
type common variations is the wireless noises that causes the RSSI
to vary dramatically. It is known that many Wi-Fi connections are
bursty: they shift between poor and good connection quality [19].
To reduce the impact on person detection accuracy, we also gener-
ate additional training data by adding random noises that resemble
such connection changes. Utilizing these two types of augmented
data, we further improve the performance of person detection.

The wide deployment of Wi-Fi devices in the indoor environ-
ments provides us with opportunity to monitor the a walking event
with multiple sender-receiver pairs. However, the RSSI data col-
lected by different transceiver pairs have different fluctuation pat-
terns, magnitudes and durations. We design a Dynamic Time Warp-
ing (DTW) based algorithm that can cope with the cross-device data
heterogeneity, and can determine the subjects’ walking directions.
To facilitate system deployment, a low-cost, convenient implemen-
tation is needed. We build our system on Raspberry Pi development
boards, with small USB Wi-Fi adapters attached. We use the open
source libraries Aircrack to control the transmission and reception
of the customized Wi-Fi packets. We deploy our system in our de-
partment building and conduct extensive testing. In a multi-day
experiment with 163 walking instances, our deep convolutional
neural network based approach is able to achieve 94.5% of detection
accuracy. Our contributions are summarized as follows:

• We proposed a Wi-Fi based device-free person detection sys-
tem that uses a deep Convolutional Neural Network (CNN)
architecture. The CNN can automatically extract effective
features from the Wi-Fi RSSI measurements to conduct per-
son detection. Using a visualization technique called the
Class Activation Map (CAM), we showed that the CNN is
able to recognize RSSI fluctuations caused by human mo-
tions while remaining robust to wireless channel noises and
interferences.

• To improve the system robustness to the wireless signal
noises and the changes of subject moving speeds, we applied
the data augmentation techniques that generates additional
data to better train the CNN classifier.

• To take advantage of the ubiquitous deployment of Wi-Fi de-
vices in the indoor environment, we designed a collaborative
sensing method to determine the subjects’ walking direc-
tions using RSSI data collected from multiple transceiver
pairs.

• We implemented a prototype system with three transmitters
and one receiver on low-cost embedded platforms. In a multi-
day experiment with 163 walking events, WiDet achieved
94.5% of detection accuracy, outperforming the moving sta-
tistics and the wavelet representation based approaches by
22% and 8%, respectively.

Figure 1: When a person moves (gray areas), three Wi-Fi re-
ceivers record different RSSI fluctuation patterns.

2 MOTIVATION
2.1 The Complexity of Wireless Signal

Fluctuations
The primary challenge we face is the need to find effective features
that can robustly detect people walking. It’s challenging because
the signal strength changes are determined by a multitude of fac-
tors that are unique to each Wi-Fi transceiver. The Wi-Fi signal
experiences various types of fading, including path loss, the shad-
owing and the multipath effects, that are dependent on the wireless
channel characteristics near the transceiver’s deployment location.
Furthermore, the Wi-Fi RSSI measurements are device-dependent.
Generally lower RSSI values indicate weaker signal strengths, but
there is no standardized relationship of any particular energy level
to the RSSI reading. It has been shown that discrepancies in mea-
surements exist even for transceivers built by the same vendors
[4, 14]. As a result, the RSSI values fluctuate with different patterns
on different Wi-Fi transceivers when a person moves in the nearby
environment, and it’s difficult to explicitly design a feature set that
is effective for all the transceivers.

The challenge is illustrated in Figure 1. In this experiment, we
have three Wi-Fi transmitter-receiver pairs deployed along a cor-
ridor. There is one person moving between the transmitter and
the receivers between 10-20 and 65-80 seconds, illustrated in gray
boxes. We can see that the RSSI values fluctuate differently when
the person is moving. In the first row of the figure, the RSSI drops,
while the RSSI increases in the second row. In the third row, the
RSSI value fluctuates up and down, without significant changes
in the mean value. Furthermore, we can see that the three links
have different RSSI values when no one is walking. Link 1,2 and 3
have RSSI values of approximately -17, -23, and -26 dB, respectively
when the environment is quiet.

To handle the different in the RSSI fluctuation patterns, we adopt
the machine learning technique, convolutional neural network in
particular, to learn the signal features directly from data. For time
series data, the Convolutional Neural Networks (CNNs) have been
shown to achieve state of the art performance [25]. One advantage
of CNN is that it can learn the detection features that in traditional



Figure 2: Algorithm Overview

algorithms were hand-engineered. This independence from prior
knowledge and human effort in feature design is a major advantage.

In the CNN architecture, each higher level convolutional layer
captures data patterns of longer time scale. The outputs of the con-
volutional layers function as a detection feature set and are fed
to a fully connected layer for person detection. Using the back-
propagation algorithm, the parameters of the CNN are fine-tuned
automatically in the training phase to optimize the detection accu-
racy. To understand the patterns captured by the CNN, we further
apply the Class Activation Map (CAM) technique to visualize the
activation values of the intermediate layers in Section 5.4. This
way we can visually inspect what RSSI fluctuation patterns con-
tribute most to the classification decision. We will present the CNN
architecture in details in Section 3.2.

2.2 Environmental Variations
Wi-Fi connections shift between poor and good connection quality
[19]. As a result, the RSSI values shift from time to time. For example,
at around second 35 in Figure 1, we can see that the RSSI values
for all the three links drop significantly. These types of noises, if
not handled properly, can cause false detections results. Another
type of variations is the change of human subject moving speeds.
The change of moving speed will create warped versions of the
RSSI fluctuation patterns. In small scale deployments, we may not
be able to record all types of moving speeds in the training data,
which can cause lower performance of the detection algorithm.

To mitigate these two problems, we apply the data augmentation
techniques. We generate additional training data by adding noises
and warping the RSSI time series. With the additional generated
training data, we can better train the CNN model about the intra-
class variations (noises and warping distortions). We will present
the data augmentation techniques in Section 3.3.

3 ALGORITHM DESIGN
3.1 Overview
An overview of the system is shown in Figure 2. We use Wi-Fi
devices to continuously record time-stamped RSSI values. After
the training data is collected, we firstly conduct a data preprocess-
ing by removing outliner values, and data resampling to ensure
constant data rate. Then we generate augmenting training dataset
by adding noises and introducing local time warping. Using both
the augmented and original datasets, we train the CNN using the

back-propagation algorithm. After training, we use CNN model to
conduct person detection.

3.2 Deep Convolutional Neural Network
Architecture

The CNN network architecture is shown in Figure 3. We use stacked
convolutional layers as a feature extractor. Lower layer convolu-
tional layers tend to capture localized detailed signal patterns, while
the higher layers tend to reveal larger scale patterns. Specifically,
given an input x, a convolutional layer computes an output h using
the following equation set:

y =W ⊗ x + b
s = BN (y)
h = ReLU (s).

(1)

In this equation set, ⊗ is the convolution operator. b represents
constant offsets, and W are filters that can detect particular signal
patterns in x. Both b and W are learnable parameters that can
be updated during the training phase. For the first level of the
convolutional layer, x is the raw time series data input. For each
upper-level convolutional layer, x represents the output of the
immediately previous layer.

BN represents Batch Normalization, which normalizes the acti-
vations of the previous layer at batch, i.e. applies a transformation
that maintains the mean activation close to 0 and the standard
deviation close to 1. This operation has been shown to significantly
speed up the training process [9].

ReLU represents Rectified Linear Unit. It is defined as ReLU (s) =
max(0, s). Themotivation for applying Rectified Linear Unit is three-
folded: it’s computationally efficient (only involves comparison,
addition and multiplication), has sparse activation (only values
greater than 0 are activated), and has few vanishing gradient prob-
lems when compared with the sigmoid activation function [8].

To reduce over-fitting and improve the network’s ability to gen-
eralize, we apply dropout layers between convolutional layers. Ba-
sically during training, a certain percentage of neurons on a layer
will be deactivated. This improve generalization because it forces
the layer to learn with different neurons with the same "concept”.

After the convolutional layers, the outputs are fed into a Global
Average Pooling (GAP) layer. The GAP layer can minimize over-
fitting by reducing the total number of parameters in the model.
Specifically, let the output dimension of the convolutional network
beh×d . The GAP layer reduces eachh dimensional feature map into
a single number by taking average, and produce an intermediate
output with dimension 1×d . Greater details about GAP can be found
in [34]. Then a sigmoid layer is used to compute a single detection
value, which is compared with a threshold to decide whether or
not there is an walking event.

In total, we have seven convolutional layers, and the number of
filters used in each layer is marked in Figure 3. These are tunable
network parameters and we arrive at these values after extensive
tuning and testing.

3.3 Data Augmentation
Compared to fully connected deep neural networks, convolutional
neural networks tend to suffer less from overfitting. Nevertheless,



Figure 3: Deep Convolutional Neural Network Architecture

Figure 4: Synthesized Augmenting Data for Different Mov-
ing Speeds and Wireless Noises.

CNNs can still benefit from data augmentation techniques [7, 12, 13].
The basic idea of data augmentation techniques is to synthesize new
data by transforming existing labeled training data samples, so that
the neural network model can learn a wider range of intra-class
variations. By observing the collected RSSI data traces, we find two
common types of variations. The first type is the change of the
signal fluctuation durations due to different walking speeds. The
second type is signal strength drops during interferences, i.e., RSSI
drops suddenly from time to time. Based on these observations, we
design two data augmentation methods.

Augmenting Data with Different Moving Speeds. To syn-
thesize augmentation data with different moving speeds, we warp
a randomly selected slice of a time series by re-sampling it up or
down, as shown in the second row in Figure 4. In particular, given
a time stamped RSSI series s of length n, we randomly select a
sub-series of length αn, where 0 < α < 1. Then we re-sample this
selected sub-series to the length of βn. A larger value of β corre-
sponds to simulating slower walking speeds. Study shows that the
comfortable walking speed for pedestrians ranges from 1.3 to 2.5
m/s [6]. Therefore, we don’t need to only consider very slow or fast
walking speeds, and the range of β is set to be (0.5α ,min(2α , 1)).
Finally we re-sample the remaining section of the data so that the
total length of the generated data remains n, as illustrated in the
second row in Figure 4.

Augmenting Data with Added Noise. Adding noise to the
training data is a common technique for data augmentation. In our
system, we generate augmented data by adding a noise value t with
probability p. The range t is empirically determined to be [0,−30],
and p is a tunable parameter with a value around one thousandth.
An example is shown in the third row in Figure 4.

After the augmenting data are generated, the deep convolutional
neural network is trained on the original data together with the
augmenting data. The CNN is ready for person detection after
training.

3.4 Collaborative Moving Direction Detection
Based On DTW

Wi-Fi devices are ubiquitous in modern office or home environ-
ments. After walking events are detected using the CNN networks,
we can utilize sensing results from multiple Wi-Fi transceiver pairs
to determine the walking directions. Intuitively, we can do so by
comparing the time of occurrences of the RSSI fluctuations. How-
ever, it’s difficult to conduct comparison between RSSI measure-
ments from multiple devices directly, because the RSSI fluctuation
in each transceiver pair has a unique pattern and duration. For ex-
ample, as discussed in Section 2, the RSSI decreases in some devices
but increases in others when a pedestrian is walking.

To alleviate the problem of different fluctuation patterns, we
use the moving variance of the RSSI values instead of the raw
RSSI measurements. Then we design a Dynamic Time Warping
(DTW) based algorithm to address the discrepancies in fluctuation
time durations. The basic idea is that DTW can be used to find the
warped versions of the two time series so that they optimally match
with each other. This way we can eliminate the impacts of duration
discrepancies and estimate the differences in the fluctuation time.
Intuitively, if the data points in A consistently matches with points
in B with later (earlier) time stamps, then it indicates that events
happens earlier (later) in A.

DTW is a classical algorithm and a brief description is provided
as follows. LetA = {a1,a2, ...,an } and B = {b1,b2, ...,bn } represent
two sequences of lengthn, respectively. The best match between the
two sequences is defined as the one with the lowest distance path
after aligning one to the other. The optimal matching is represented
by a matrix path such that apath[i,1] is aligned with bpath[i,2]. We
compute the matrix path using the efficient algorithm described in
[18].

The algorithm is illustrated in Figure 5, we plot the dynamic time
warping between two moving variance series, shown in the left and
in the bottom of the figure. The color map represents the matching
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Figure 5: The Dynamic TimeWarping Between TwoMoving
Variance Series

cost (darker colors means lower costs), and the thick gray line
represents the optimal matching path, which is represented by the
matrix path. Intuitively, if there is no time delay of the fluctuation
events within two series, then path will be a purely diagonal line,
as shown in the gray dashed line. On the other hand, if time delay
exists between two fluctuation events, the optimal path will deviate
from the diagonal line. This is illustrated in Figure 5. The moving
variance series on the left side reaches peak at time step 12, while
the moving variance series on the bottom reaches peak earlier at
time step 7. Since the time series on the bottom fluctuate earlier
than the one on the left, the Opt Path travels below the diagonal line.
Based on this intuition, we can use the area between the optimal
path and the diagonal line as an indicator about the relative time
difference between fluctuation times in the two time series.

In particular, the walking direction detection algorithm works as
follows. For each receiver i , we extract the moving variance of the
RSSI, represented by Si = {si (1), si (2), ...si (n)}. Then we apply the
DTW algorithm to find their matching path path between Si and Sj
from two transmitter-receiver pairs. To quantify the time difference
between the walking events, we define the Sequence Mis-match
Index (SMI), which is the area encircled by the optimal path and the
diagonal line, divided by the area of the entire rectangle. We further
define SMI to be negative when the path is below the diagonal and
positive otherwise. The SMI between two sequences Si and Sj is
computed using the following equation:

SMI = (
∑
i
(path[i, 1] − path[i, 2]))/n2. (2)

Finally, we compare SMI with a threshold Tm . If SMI > Tm
or SMI < −Tm , then the algorithm output that the pedestrian is

moving along the direction from pair i to pair j, or the reverse
direction, respectively.

4 IMPLEMENTATION
The system is running on the Linux kernel version 2.6 on a Rasp-
berry Pi development board.We use theAlfa NetworkWi-Fi adapters
(AWUS036H) to transmit and receive Wi-Fi packets. To control Wi-
Fi, we use the Aircrack-ng library [1]. The library enables us to
custom-build and broadcast 802.11 frames in the transmitter, and
capture 802.11 frames in the receivers.

For each packet transmitter, we construct customized beacon
frames. We use the beacon frame format defined in RadioTap [3] as
a template, and assign a unique value to the field Source Address
(DA) field as the transmitter ID. To enable packet loss detection, we
assign a packet ID number to the Sequence Control field (Seq-ctl)
field. After the beacon frame is built, we broadcast it using socket
building and transmission API in the Aircrack-ng library, at an
interval of 10ms.

We configure the receivers into the Monitoring Mode so that
they can receive any Wi-Fi packets available. After the packets
are received, we use the RadioTap parser software to analyze the
information [3]. We extract the Source Destination to identify the
transmitters, and abandon unrelated packets. Then we use the
RadioTap parser to extract the packet RSSI, time stamp and the
sequence number for walking detection.

The training of the CNN architecture is computational inten-
sive. We transfer the collected training dataset to a cloud-based
server equibed with a 2.2Ghz CUP, 12Gb memory and a Tesla K80
GPU. After the CNN model is trained, the person detection can be
computed efficiently on devices with lower computing power.

5 EVALUATION
5.1 Deployment
We have conducted walking detection experiments to evaluate
the performance of the proposed system. The layout of the office
environment of the experiment is shown in Figure 6. Our testbed
consists of three Wi-Fi transmitters and one Wi-Fi receiver, whose
locations are depicted using black dots (APs) and triangles (MP),
respectively. There are no direct line of sight channels between the
transmitters and the receiver and the walls are made of wood.

The pedestrians are walking in the corridor, as encircled by
the red lines in Figure 6. The experiments have been repeated at
different times across multiple days, and 163 moving events are
recorded. The ground truth of human moving times are recorded
manually by another operator. We slice the collected data into 15-
second-long segments. If an motion event occurs during this time
interval, the segment of data has a positive label. The data segment
has a negative label otherwise. We randomly split the entire dataset
into training and testing data. For the training data, we use the data
augmentation techniques to generate additional data to improve
the algorithm training. The trained machine learning model is then
tested in the test dataset to find detection accuracy. We use the
detection accuracy as the evaluation metric, which is defined as
the percentage of correct detections versus the total number of test
samples.



Figure 6: Deployment Floor Plan

5.2 Baseline Algorithms
5.2.1 Moving Statistics Based Algorithm. The first baseline algo-
rithm we implemented is the widely used moving statistics based
algorithms[31]. This algorithm computes the average and variance
of the data within a moving detection window w , and compares
these statistical values with a threshold T to determine whether or
not an event has occurred.

5.2.2 Wavelet Transform Based Algorithm. Next we designed an-
other baseline algorithm, which is based on wavelet transform.
From the data we observe that human motions mainly caused low-
frequency RSSI fluctuations, while other noises have amuch broader
distribution of energy in the frequency domain. The wavelet trans-
form is an effective tool that can localize an event in both time
and frequency domain. Using the wavelet transform as a feature
extractor, we can achieve more accurate detection accuracy than
statistical features.

The basic idea of the wavelet transform based approach is to
analyze the time series data in a multi-scale perspective. Using
small scale wavelets, the transformed signal will have large peaks
during the event process, which can be used to locate the motion
events in time domain. When large scale wavelets are applied, the
transformed signal will generate two peaks that represent the start
and over of each event.

Specifically, to extract the fine-grained wavelet features, we
conduct continuous wavelet transform [5] using a small scale sf
wavelet on the input RSSI data. Then we apply the local maximal
algorithm to find the tallest three peaks. The average height hf
of these three peaks is used as the fine-scale wavelet feature. To
extract the coarse-scale wavelet features, we conduct continuous
wavelet transform using a wavelet of a large scale sc on the input
RSSI data. Then we apply the local maximal algorithm to find the
most prominent two peaks. The average height hc of these two
peaks and the distance d between them are used as the coarse-scale
wavelet features.
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Figure 7: Detection Accuracy
After the features hf , hc and d are collected, we use a Bayes

classifier to detect whether there is a pedestrian. The wavelet scales
sf and sc are tunable parameters and we set them to be 0.2 s and 2
s, respectively.

5.3 Walking Detection Accuracy
We firstly evaluate the accuracy for the system to detect walking
of pedestrians. The results are shown in Figure 7. We can see that
using the basic moving statistics based algorithm (Moving Sta), the
detection accuracy is around 72%. This is because these features
cannot handle the disturbances caused by interferences and noises.
Using the wavelet transform to extract motion features, we can im-
prove the detection accuracy to 86%. This shows the improvement
of using frequency domain features. The wavelet transform based
feature is more effective in coping with random noises.

When we apply the Convolutional Neural Network (CNN), we
have achieved 91.9% of detection accuracy. This is because com-
pared with hand-craft features, the deep machine learning archi-
tecture can learn more subtle patterns in the time series data. By
using the data augmentation technique in the training phase, we
can improve the performance of the CNN to 94.5%. This is because
the added noises and time-warped training samples can help the
network gain robustness and improve generability to the testing
dataset. As a result, the test detection accuracy is improved.

5.4 Localize the Contributing Regions with
Class Activation Map

One drawback of the CNN is that it can not provided explicit infor-
mation about the signal patterns it recognizes. One way to partially
mitigate this problem is to plot the Class Activation Maps (CAM) of
data samples. A CAM can visualize the contributing regions in each
data sample. This can help us highlight the discriminative subse-
quences that contribute most to the detection result. Furthermore,
CAM provides a way to find a possible explanation on why the
CNN works for certain classification settings.

The basic idea of the CAM is that each node in the Global Average
Pooling (GAP) layer corresponds to a different activation map, and
that the weights connecting the GAP layer to the final sigmoid layer
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encode each activation map’s contribution to the detection result.
To obtain the class activation map, we sum the contributions of
each of the detected patterns in the activation maps, where detected
patterns that are more important to the predicted object class are
given more weight. Using the approach described in [34], we plot
the CAMs for a few sample data in Figure 8.

In Figure 8, the more discriminative regions in the input data are
highlighted using lighter red color. We can see that the fluctuations
caused by walking have brighter colors, while the random noises
have darker colors. These indicate that the CNN is able to distin-
guish human motions from random heat noises. Furthermore, in
the right lower figure, we can see that the abrupt change of RSSI,
which is caused by wireless interference, has dark color. This shows
that the CNN is able to recognize that wireless interferences are
not associated with human walking events.

5.5 Moving Direction Detection
Next we evaluate our collaborative moving direction detection
algorithm. As depicted in Figure 6, we have three transceiver links,
i.e., l1 between AP1 andMP, l2 between AP2 andMP, and l3 between
AP3 and MP. To determine the walking direction of the subjects,
RSSI data from two links are needed. We group the three transceiver
links into three pairs: l1-l2, l1-l3, and l2-l3, and execute the moving
direction detection algorithm on each pair. We define the up/down
direction as walking north/south (the Exit arrow in Figure 6 points
to the south). The ground-true moving directions are recorded
manually. We calculate the detection accuracy for both directions.
The results are shown in Figure 9.

From Figure 9, we can see that the detection performances for
both walking directions are similar. This shows that our algorithm
is able to handle both moving directions equally. We can also see
that the detection accuracy in Link Pair 3, (l1 and l3), is more than
82%, which is higher than the other two links (around 70%). This is
because the distance between the two links in Pair 3 is larger than
the other two pairs. As a result, the time differences recorded by
these two links are larger, which facilitate the detection of moving
directions. This indicates that increasing the distance between the
twoWi-Fi links tends to improve performance of direction detection,
given that the subjects will still traverse both.
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Figure 9: Moving Direction Detection Accuracy

6 RELATEDWORK
Device-free localization has attracted much attention due to its
unique advantages: it doesn’t require active user participation, can
achieve through the wall detection, and is privacy preserving. Early
works such as [15, 27, 30–32] use moving average or variance of
RSSI levels as features to detect human motions and locations. To
improve performance, more advanced features based on wavelet
transform are designed [21, 22]. However, these type of features are
not effective in recognizing the different RSSI fluctuation patterns
recorded on different Wi-Fi transceivers. To address this problem,
we apply the Convolutional Neural Network (CNN) to extract all
the different RSSI fluctuation patterns recorded on different Wi-Fi
transceivers automatically. Using the data augmentation technique,
we further improve the robustness of the algorithm to the wireless
noises.

With development of the Orthogonal Frequency Devision Mul-
tiplexing (OFDM) technologies in the Wi-Fi devices, the Chan-
nel State Information (CSI) has been used in device free localiza-
tion. By exploiting the subcarrier signal strengths in the CSI , rich
multi-path information about the environment can be extracted
[17, 23, 28, 29]. The CSI technology enables many applications, in-
cluding fine-grained localization [20], emotion sensing [33], and
vital sign monitoring [24]. One drawback of the CSI based system is
that there are limited Wi-Fi devices that can support providing CSI
information. Currently many CSI based systems are implemented
on the Intel’s IWL 5300 NIC [2], since most other Wi-Fi NICs don’t
provide CSI information to developers. This limits the adoption
of the CSI based localization systems. On the contrary, in many
existing Wi-Fi devices, as well as other wireless protocols such as
bluetooth and zigbee, signal strength can be easily retrieved by
accessing the RSSI in the MAC layer. This ability to utilize wire-
less signals in the existing wireless infrastructure facilitates wider
deployment.

Due to the wide availability of the Wi-Fi infrastructure, much
work has been devoted to explore collaborative RF sensing using
multiple wireless devices. One representative technique is called Ra-
dio Tomographic Imaging (RTI)[10, 11, 16, 26]. When wireless links
are obstructed by objects moving in the radio tomographic network,
they will experience signal degradation due to shadowing effects.
The RTI systems utilize this phenomenon to image the attenuation



of objects within the network area. However, these systems require
dense deployment of homogeneous wireless transceivers, and all of
them require direct line of sight to each other. These requirements
limit the application of this technology. In this work, our goal is to
achieve walking direction detection with low-cost deployment and
without the line-of-sight deployment requirement. By utilizing the
Dynamic Time Warping (DTW) technique, our system can achieve
walking direction detection with small numbers of Wi-Fi devices
(As few as two transmitters and one receiver), and can achieve
through the wall walking direction detection.

7 CONCLUSION AND FUTUREWORK
In this work, we have designed a deep convolutional neural net-
work to conduct device-free walking detection with high accuracy.
We show that the CNN architecture can distinguish signal varia-
tions caused by human motions from random noises and wireless
interferences. To further improve the network generability to vari-
ations including walking speed changes and additional noises, we
generate augmentation data in the training dataset, which helps the
system better learn the intra-class invariance in the data. Utilizing
wireless signals from multiple sender-receiver pairs, we design a
dynamic time warping based algorithm to detect the pedestrian’s
walking directions. We implement our system on a low-cost em-
bedded platform. In an experiment with 163 walking events, we
show that our system can detect walking events with over 94.5%
of accuracy. In the future work, we plan to explore extending the
current system for the multi-person detection. By differentiating
the Wi-Fi RSSI signal perturbation caused by different number of
pedestrians, many new applications, such as traffic flow monitoring
and crowd density estimation can be achieved.
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