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ABSTRACT

"Hands on the wheel, eyes on the road" is the central guideline

of safe vehicle driving practices. Many advanced driver assistance

systems can effectively detect abnormal vehicle motions. However,

these systems often leave insufficient time for drivers to respond

to complex road situations, especially when the drivers are dis-

tracted. To reduce accidents, it is essential to detect whether a

driver complies with safe driving guidelines in real time and pro-

vide warnings early before any dangerous maneuvers occur. There

are vision-based driver distraction monitoring systems which rely

on cameras in high-end vehicles, but their performances are heavily

constrained by visibility requirements. In this paper, we present

MagTrack, a driver monitoring system that is based on tracking

magnetic tags worn by the user. With a single smartwatch and

two low-cost magnetic accessories: a hand magnetic ring and a

head magnetic eyeglasses clip, our system tracks and classifies a

driver’s bimanual and head movements simultaneously using both

analytical and approximation sensing models. Our approach is ro-

bust to driver’s postures, vehicles, and environmental changes. We

demonstrate that a wide range of activities can be detected by our

system, including bimanual steering, visual and manual distrac-

tions, and lane changes and turns. In extensive road tests with 500+

instances of driving activities and 500+ minutes of road driving

with 10 subjects, MagTrack achieves 87% of precision and 90% of

recall rate on the detection of unsafe driving activities.
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1 INTRODUCTION

Distracted driving causes 9 fatalities and 1,071 injuries in the U.S.

each day [18], and drivers are at fault for 94% of all car collisions

surveyed by the National Highway Traffic Safety Administration

(NHTSA) [58]. Most of these errors result from the driver’s failure to

comply with safe driving guidelines, including manual distractions

(e.g., one hand off wheel), visual distractions (e.g., eyes off road),

unsafe turn and lane change (e.g., failure to check blind spot), and

incorrect steering techniques (e.g., one-hand steering, hand-over-

hand steering). We can prevent many accidents if these unsafe

driving behaviors are automatically detected in real-time.

Unfortunately, existing technologies for driver activity mon-

itoring have their limitations. Some advanced driver assistance

systems can effectively detect abnormal vehicle motions, then warn

the drivers of impending collisions [22], lane deviations [33], and

aggressive steering [6, 9, 29]. However, they often leave insuffi-

cient time for the drivers to respond to complex road situations,

especially when the drivers are distracted [2, 19, 34]. Therefore,

it is important to detect unsafe driving activities early before any

dangerous maneuvers occur.

Camera based systems that can detect visual distractions and

drowsy driving have been developed and deployed in high-end

vehicles, but they are constrained by visibility requirements, and

unable to monitor abnormal hand movements, including manual

distractions or aggressive steering. Wearable technologies have

been used to monitor driving activity. For example, previous re-

search used inertial measurement units (IMUs), commonly found

on smartwatches, to detect erratic steering wheel movements [6]

and manual distractions [7], but these solutions are limited to the

detection of the hands where smartwatches are worn. Therefore,

the development of reliable, robust, and low-cost technologies to

monitor various driver activities is desirable.

In this paper, we present Magtrack, a driving monitoring system

using a novel, different approach. Since small and cheap permanent

magnets produce their own persistent magnetic fields without any

power consumption, they can serve as active tracking tags in short

range. So we embed off-the-shelf magnets into various user-friendly

accessories, such as buttons, rings, gloves, wristbands, headbands,

eyeglasses, earphones, ear clips, etc. These accessories, if worn by

a user, can provide magnetic signals that convey rich information

about the user’s movements. Since driving activities consist of

coordinated hand and head movements, we use two wearables,

specifically a magnetic ring worn on one hand and a magnetic

eyeglasses clip.



To track these tags, the driver wears a smartwatch on the oppo-

site hand to measure the magnetic field, and recognize 3D hand and

head motions based on driving activity models. Previous research

on magnetic tag tracking usually use two or more magnetometers

to track each target [10, 12, 16, 23, 60]. The reason is that a single

magnetic tag has six degrees of motion freedom, and two three-axis

magnetometers are required to uniquely identify its location and

orientation. It is very challenging to track two targets with just

one magnetometer. To tackle this problem, we identify that most

safe driving activities consist of coordinated and deterministic hand

and head movements. As a result, each tag has its specific motion

patterns and constraints, which provides a unique opportunity for

us to differentiate the signals generated from the two tags and even

track their concurrent motions. Based on these observations, we de-

velop motion models and tracking algorithms to recognize different

driving activities.

We validated our sensing and activity recognition algorithms

with different drivers, different types of cars, under different road

conditions. Particularly, we demonstrated that our solution is able

to adapt to gesture variations and geometric magnetic field changes

during road tests. Moreover, by analyzing the likely motions associ-

ated with unsafe driving behaviors, we design real-time monitoring

algorithms to detect i) manual and visual distractions, when the

driver takes either hand off the steering wheel or spends too much

time with eyes off the road; ii) incorrect steering control, when

the driver makes abrupt or improper steering motions; and iii) un-

safe lane changing and turning when the driver fails to perform

a shoulder check on the blind spot and switch on turn signals be-

fore steering. MagTrack can benefit many people, including night

commuters, long-distance drivers, novice drivers, and drivers with

Attention Deficit and Hyperactivity Disorder (ADHD)[55, 61].

We summarize the contributions of this work as the following:

• We build a driver monitoring system that reliably monitors

a driver’s two hands and head motions in real-time. Our

system detects a wide range of unsafe driving activities in-

cluding manual and visual distractions, unsafe turning and

lane changing, and incorrect steering control. It is robust

against different types of vehicles and environmental set-

tings.

• To facilitate fine-grained tracking in a small space, we use

battery-free off-the-shelf magnets to design user-friendly

magnetic accessories for the drivers. These active wearable

tags provide additional signals that convey rich position and

motion information about a driver’s posture and motion.

• We design a novel sensing algorithm that tracks the drivers’

magnetic wearables with a single magnetometer on the dri-

vers’ smartwatch. As each wearable has its unique motion

patterns and constraints, our algorithm is able to differenti-

ate the signals generated from the two tags and even track

their concurrent motions. Based on the tracking results, we

further develop a machine learning based algorithm to detect

different driving activities. Our approach can go beyond the

driver monitoring application.

• In extensive road tests with 500+ instances of different driv-

ing activities and 500+ minutes driving time from 10 subjects,

MagTrack successfully achieves 87% of precision and 90% of

recall rate on unsafe driving activities detection.

Figure 1: System Architecture of MagTrack

2 OVERVIEW

2.1 Safe Driving Compliance Problem

Driving activities require coordinated hand and head movements,

because the drivers need to assess the surrounding environment and

control the vehicle accordingly. Safe driving guidelines in driver’s

manuals define the correct movements (e.g., positions, timings,

and sequences). Adherence to these guidelines minimizes the risks

of driving. However, many drivers fail to comply with these rules,

especially when they are distracted or tired. Here, we define some of

the most common unsafe driving behaviors: (i) manual distraction:

a driver takes either hand off the steering wheel for other activities

such as making phone calls or eating; (ii) visual distraction: a driver

takes eyes off the road and turns head to scenery or advertisement

signs, or even chats with passengers. (iii) incorrect steering control:

a driver is holding the steering wheel at the wrong positions, or

steering the wheel using improper or aggressive ways; and (iv)

unsafe lane changing/turning: a driver fails to turn their head to

check the blind spots and the side mirror (or traffic from other

directions at the intersection) before steering the car to change lane

or turn.

We can see that these practices boil down to combinations of a

few basic types of hand and head gestures. The basic driving hand

gestures include holding and steering movements. Holding the

wheel requires a driver to put both hands on the steering wheel at

the correct positions. Taking either hand off the wheel for too long

increases safety risks. Steering movements involve coordinated

bimanual hand movements to turn the wheel. The head gestures

include turning head leftward, rightward, downward with an angle.

To monitor the driving activities, it is essential to capture all these

hand and head gestures.

2.2 System Design Overview

The system architecture of MagTrack is shown in Figure 1. Mag-

Track consists of three layers:

• Magnetic wearable accessories. MagTrack uses them to track

different body parts of the driver. We attach a block magnet

that measures 5cm × 2.5cm × 1.25cm to the driver’s finger,

and a column-shaped magnet with a height of 11cm and

radius 4mm to a pair of eyeglasses at the driver’s left temple.



It is possible to customize the magnetic wearables with dif-

ferent form factors and types, such as buttons, rings, gloves,

wristbands, headbands, eyeglasses, earphones, ear clips, etc.

• A smartwatch. To monitor driving activities, we put the

smartwatch on the opposite hand to the one with the mag-

net. The main challenge of our approach is to use a single

magnetometer on the smartwatch to track two magnetic

wearables. We address this challenge by developing a novel

sensing algorithm to differentiate magnetic signals generated

from two magnets, and track them simultaneously.

• Safe driving apps. These apps recognize different driving

activities, and issue warnings to the driver if they detect

violations of safe driving guidelines. These apps can be con-

figured based on the driver’s driving habits, e.g., driving

posture. They can also take other factors such as traffic and

road conditions into account, if such information is available.

3 HAND AND HEAD TRACKING

In this section, we focus on monitoring the movements of the

magnetic tags attached to the driver’s hand and head, using the

smartwatch magnetometer. When the driver’s hands are holding

the steering wheel, their motions are constrained within a circle.

Similarly, the driver’s head is constrained by the car seat configura-

tion. We construct motion and sensing models for these hand and

head movements. Based on these models, we design a Simultaneous

Tracking and Classification (STC) algorithm to track the magnetic

tags. The STC framework consists of a bank of parallel running

Kalman filters that track different magnetic tags and motion types,

including hand steering motions, head turn motions, and concur-

rent hand and head motions. The STC algorithm firstly identifies

the most likely motion type (hand, head, or concurrent motions),

and then estimates the corresponding motion track.

3D rotation. In the development of the sensing models, the 3D

rotation operations of vectors are used extensively. The 3D rotation

around an axis A for angle β can be represented using a matrix

R(A, β) [44], which is shown in the following equation:

R(A, β) =



tu2x +C tuxuy − Suz tuxuz + Suy
tuxuy + Suz tu2y +C tuyuz − Sux
tuxuz − Suy tuyuz − Sux tu2z +C


, (1)

where A = [ux ,uy ,uz ]
T
,C = cos(β), S = sin(β), t = 1 −C .

3.1 Hand Steering Motion Modeling

In this subsection we describe how to use our Kalman filtering

model to track the right hand motions on the steering wheel. A

Kalman filter includes a State Transition Model and a Measurement

Model. The State Transition Model contains a state variable vector,

which describes the right hand position and posture, and a state

transition matrix, which describes how the state variable vector

evolves over time. We then introduce the Measurement Model,

which describes how the right hand position and posture influence

the sensor measurements. Based on above models, we are able

to use the Unscented Kalman filter [67] to track the right hand

motions.

State Transition Model. We use θ1 to represent the user’s right

hand holding position. As illustrated in Figure 2, θ1 is the angle

between the hand and the 3 o’clock position of the steering wheel.

(a) (b)

Figure 2: Steering Motion Model

We use θ2 to represent the user’s hand posture, which describes

how the driver holds the steering wheel. As illustrated in Figure 2,

the driver’s hand can rotate around the steering wheel tube with

an angle θ2. We set θ2 to zero when the north pole direction of the

magnetic tag lies on the steering wheel plane and points to the

centrifugal direction.

We also include the change rates, Ûθ1 and Ûθ2 into the state variable

vector. The benefit is that the tracker will have quicker responses

to the system variable changes. By definition, for time step k , we

have θi (k) = θi (k − 1) + ∆T ∗ Ûθi (k − 1) for i = 1, 2, where ∆T

denotes the time interval between two time steps. Writing them

into matrix form, we have X s (k) = F s · X s (k − 1), where the state

variable vector X s (k) and state transition matrix F s are defined in

the following equations:

X s (k) =



θ1(k)
Ûθ1(k)

θ2(k)
Ûθ2(k)



, F s =



1 ∆T 0 0

0 1 0 0

0 0 1 ∆T

0 0 0 1



. (2)

Measurement Model. Next we construct the measurement model

for hand steering motions. Our goal is to find the analytical function

that maps the hand holding position and posture, represented by θ1
and θ2, to and the magnetic field measurements on the smartwatch.

The field of the hand magnetic tag is determined by its position

relative to the sensor, ®at , and magnetic moment ®m, which is a vector

describing the dipole strength and direction. In what follows, we

analyze how the changes in θ1, θ2 influence the values of ®at and ®m.

When ®at and ®m are obtained, we compute the estimated magnetic

field using the standard field distribution function.

As shown in Figure 2, we use r to denote the radius of the steer-

ing wheel, and t the tilt angle of the steering wheel. The vehicle

coordinate frame Xv − Yv − Zv is defined as follows: Zv is point-

ing vertically upwards; Yv is pointing horizontally forwards; Xv is

perpendicular to both Yv and Zv , and is pointing right.

• Hand Magnetic Tag Position . We decompose the vector from the

magnetic tag to the smartwatch sensor, denoted by ®at , into three

components:

®at = ®aw − ®ac (θ1) − ®af (θ1, θ2). (3)

®aw , the orange vector in Figure 2, is the vector from the center

of the steering wheel to the smartwatch magnetometer when the

driver is holding the steering wheel. The position of the watch

depends on the driver’s hand holding position and personal holding

habit. We compute an estimate of ®aw during the calibration process.

In this section, we consider the case when the driver’s left hand is

holding the steering wheel without moving. In Section 5, we will

provide algorithms to detect the driver’s left hand motions.
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Figure 3: Magnetic Measurements vs. Model Estimations

The vector ®ac is the blue vector in Figure 2. The value of ®ac
is determined by the holding position θ1. When θ1 changes, ®ac
can be viewed as a vector rotating around rotation axis Aw of the

steering wheel, which has a tilt angle t . We derive the expression

of ®ac by rotating from its initial position. Specifically, ®ac (θ1) =

RAw (θ1) ∗ r ∗ [1, 0, 0]
T , where RAw (θ1) represents a 3D rotation

around axis Aw with angle θ1, as defined in Equation 1. r is the

radius of the steering wheel. The expressions for ®Aw and ®ac (θ1)

are as follows:

®Aw = [0,− cos t, sin t]T ,

®ac (θ1) = R(Aw , θ1) ∗ r ∗ [1, 0, 0]
T
.

(4)

Next we analyze ®af in Equation 3, illustrated as the purple vector

in Figure 2. The thickness of the driver’s finger and the shape of the

magnetic tag determine the length of ®af , denoted by l . Intuitively, ®af

can be viewed as a vector rotating around axis ®A2 by an angle θ2. ®A2

is a unit vector perpendicular to both ®ac and ®Aw , so we can compute

the value of ®A2 using the cross product between ®Aw and ®ac . When

θ2 = 0, ®af is parallel to ®ac , i.e., ®af (θ1, 0) = l/r ∗ ®ac (θ1). Therefore,

we compute ®af (θ1, θ2) by rotating the vector ®af (θ1, 0) around the

axis ®A2 by an angle θ2, as shown in the following equation:

®A2 = ®Aw × ®ac (θ1),

®af (θ1, θ2) =
l

r
∗ R(A2, θ2) ∗ ®ac (θ1).

(5)

Finally, we can use ®ac , ®af and ®aw to compute the magnetic tag

relative position ®at using Equation 3.

• Hand Magnetic Tag Orientation. The direction of the magnetic

tag’s north pole is represented by ®m. In our case, ®m has the same

direction with vector ®af , shown in Figure 2. ®m is be computed by

rotating its initial value ®m(0, 0) around axes ®Aw and ®A2 for angles

θ1 and θ2 consecutively. When θ1 = θ2 = 0, ®m = [1, 0, 0]T . The

vector ®m is computed as follows:

®m = R(Aw , θ1) ∗ R(A2, θ2) ∗ [1, 0, 0]
T
. (6)

In this equation, RAw (θ1) and RA2
(θ2) represent the 3D rotation

operations defined in Equation 1, and rotation axes ®A2 and ®Aw are

defined in Equation 4 and 5.

Magnetic Field Estimation. Based on the estimates of ®at and

®m described from Equation 3 to 6, we can analytically calculate the

magnetic field ®B:
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Figure 4: Right Hand Tracking

®B = H s (θ1, θ2) =
|M |µ

4π | ®at |3

[
3®at ®a

T
t

| ®at |2
− I3

]

®m, (7)

where | ®at | is the norm of ®at , |M | is a constant describing the

strength of the magnet, and µ is a constant representing the mag-

netic permeability of the environment. We plot the theoretical

values ®B and the actual measurements ®b in Figure 3 when the driver

is holding different positions with different postures. Our model

accurately predicts sensor measurements even when holding posi-

tion θ1 varies from 0◦ to 180◦ and wrist angle θ2 varies from 0◦ to

90◦.

With the definition of state transition model (Equation 2) and

measurement model (Equation 7), we can track the values of the

state variables, holding position θ1 and posture θ2, using the Kalman

filtering algorithm. Since the measurement model is nonlinear, we

select the Unscented Kalman filtering algorithm [67], which has

low computation cost and the ability to handle nonlinear Kalman

filtering models. A sample tracking result is shown in Figure 4.

During the experiment, the driver changes the steering wheel hold-

ing position θ1 slowly, and the ground truth holding positions are

represented by the black thin line. We repeat this test for three

times with different holding postures θ2, which ranges between 0◦

and 90◦. We can see that the θ1 tracking results, represented by

thick lines in Figure 4, closely follow the ground truths.

To calibrate the right hand tracking algorithm, we need to know

three parameters r , t , and ®aw in Figure 2. It is possible to directly

measure these parameters, but we find it easier to adopt the Max-

imum Likelihood Parameter Estimation (MLPE) approach. MLPE

can search for the most likely parameters such that the magnetic

field computed by the sensing model closely matches the measure-

ments [70]. Specifically, the driver needs to hold the steering wheel

with their right hand with different positions θ1 and postures θ2.

The system records the magnetic sensor measurements together

with the ground truth values of θ1, θ2. Then we use MLPE to esti-

mate the values of r , t , and ®aw , such that the model predictions are

closest to the actual magnetic sensor measurements.

3.2 Head Motion Modeling

Next, we present the Kalman filtering models for head motion mon-

itoring. As described earlier, we attach a magnet to the driver’s

eyeglasses and use the smartwatch magnetometer to detect its mo-

tions. The primary challenge is that the long distance from the tag
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to the magnetometer causes a low signal-to-noise ratio because the

magnetic field strength at the magnetometer is relatively weak. As

a result, it’s difficult to construct an exact analytical measurement

model for the head magnetic tag. To address this challenge, we first

divide head motions into three types: left turn, right turn, and nod-

ding, then construct a separate Kalman filter to track each of them.

This way we reduce the complexity for tracking head turns for each

direction, so that an approximate linear measurement model can be

used. We firstly present the Kalman filter, denoted by KF l , which

tracks the left head turn motions, in Equation 8. The Kalman filter

designs for other directions are similar.

KF l :
X l (k) =

[
γl (k)

Ûγl (k)

]
, F l =

[
1 ∆T

0 1

]
,

®Bl (k) ≈ H l (γl (k)) = ®a0 + ®a1 ∗ γl (k).

(8)

The Kalman filter KF l consists of a State Transition Model and

a Measurement Model. The state variable X l (k) contains the left

head turn angle γl ranging from 0◦ to 90◦. When the driver is

facing forwards, we set γl zero. To facilitate the tracking, we further

include the head angle change rate Ûγl into the state variable. By

definition, we have γl (k) = γl (k − 1)+∆T ∗ Ûγl (k − 1). Taking it into

matrix form, we have X l (k) = F l · X l (k − 1), where X (k) and F l

are defined in the first line of Equation 8.

We use the linear approximation technique to create the mea-

surement model for the head left turn. When the driver’s head

turns leftwards, the 3D magnetic field measurements ®Bl can be

regarded as a function of the left head turn angle γl . Instead of

finding the exact expression of this function, we use linear approxi-

mation, i.e., ®Bl ≈ ®a0 + ®a1γl . The values of ®a0 and ®a1 are estimated

in the calibration process, which will be described at the end of this

subsection.

After the Kalman filtering model KF l is defined, we can use the

classical linear Kalman filter to estimate the head left turn angle

γl (k) [69]. We plot the tracking result in the middle row of Figure 5.

To validate the measurement models H l (), we compute the model

estimation error ek = | ®B(k) − H l (γl (k))|. The results are shown

in the third row in Figure 5. We can see that the norms of the

estimation errors are almost always smaller than 3µT .

Using the same technique used to construct the left head turn

Kalman filterKF l , we can also construct the Kalman filters for right

head turns and down head turns, which are represented by KF r ,

KFd .

To calibrate the head tracking algorithm, we need to know the

values of ®a0 and ®a1 in Equation 8. During the calibration, the driver

turns head to the left, right and down once, and the sensor mea-

surements are recorded, denoted by [B1,B2, ...,Bn ]. ®a0 is estimated

by computing the mean of the measurements B for the first few

seconds when the driver faces forwards and the head angle is zero.

When the driver turns head to the maximal angle, about 90◦, the

value of |Bk − ®a0 | takes the maximal value. We then use a standard

linear regression technique to estimate the value of ®a1.

3.3 Simultaneous Tracking and Classification

Concurrent Motion Modeling. In some cases, the driver moves

their hand and head at the same time. For example, while steering

at an intersection, the driver may also turn their head to check for

pedestrians. Intuitively, when both magnetic tags move simultane-

ously, the impact on the sensor measurements is a superposition

of the influence from each tag. We use separate Kalman filters to

monitor concurrent steering and head turning motions, i.e., the

driver turns head left or right while steering the wheel with their

right hand. We define the measurement model as the sum of the

measurement models for hand and head motions. The Kalman filter

for concurrent steering and head left turn motions, KF sl is shown

below.

KF sl :
X sl
= {θ1, θ2,γl }, F

sl
= I3×3,

Bsl = H sl (θ1, θ2,γl ) = H s (θ1, θ2) + H
l (γl ) − ®a0,

(9)

where H s (θ1, θ2) and H
l (γl ) are the measurement models for hand

steering and head turn motions defined in Equation 7 and 8, re-

spectively. To reduce the error detections that confuse individual

motions with concurrent motions, we add an constraint that θ1 and

γl be larger than certain thresholds, i.e., |θ1 | > Tθ1 and |γl | > Tγl .

This way, the Kalman filter KF sl for concurrent motions becomes

active only when both magnetic tags have large motions. On the

other hand, if only one magnetic tag is moving, the separate Kalman

filters KF s or KF l will be selected.

Simultaneous Tracking and Classification. Using the Kalman

filtering models, KF i ,where i = s, l, r ,d, sl, sr , which corresponds

to right hand steering, head left turn, head right turn, head down

turn, concurrent steering and head left turn, and concurrent steer-

ing and head right turn, hand and head motions can be recognized

and tracked in real time. Based on the tracking results of these par-

allel Kalman filters, the STC framework can choose the most likely

motion type using the Bayesian rule. The STC is described in Algo-

rithm 1. The input of the algorithm is the magnetic sensor measure-

ments within a time window, represented by {B(1),B(2), ...,B(W )}.

The algorithm output is the most likely motion type c , and the

corresponding tracking results {X c (1),X c (2), ...,X c (W )}.

Given the sensor measurement B(k), the algorithm runs all the

6 parallel Kalman filters, as shown in Line 3. Line 4 and 5 represent

the Kalman filters’ prediction and update steps, which estimate

of the state variable X i (k) for the motion class i . We use an Un-

scented Kalman filter [67] for hand steering and concurrent motion

tracking, and a classical linear Kalman [69] filter for head turn



Algorithm 1 Simultaneous Tracking and Classification

Input: Magnetometer Measurement: B(k),k = 1, 2, ...,W

Output: Motion Type: c , Tracking Result: X c (k),k = 1, 2, ...,W

1: counti ← 0 for all Motion Class i

2: for Time Step k = 1 :W do

3: for Motion Class i = 1 : N do

4: X̃ i (k) ← F · X i (k − 1)

5: X i (k) ← update(B(k), X̃ i (k))

6: δ i
k
← B(k) − H i (X i (k))

7: P(B(k)|i) ← 1
(2π )3σ /2

exp{−δ i (k)T δ i (k)/(2σ )}

8: P(i |B(k)) =
P(B(k)|i)P(i)

∑s
j=1 P(B(k)|j)P(j)

9: Normalize P(i |B(k))

10: if P(i |B(k)) > T then

11: counti + +

12: end if

13: end for

14: end for

15: c ← argmax
i
(counti )

16: return c , {X c (1),X c (2), ...,X c (W )}

motion monitoring. To calculate the error covariance matrices, we

use methods standard in Unscented and classical Kalman filters.

Greater details can be found in [67, 69]. In Line 6, the post-fit mea-

surement residueδ i (k) is computed, which is the difference between

ground-truth measurement B(k) and the post-fit measurement esti-

mateH (X i (k)). We assume the sensor measurements contain white

noises V ∼ N (0,σ 2), where σ 2 is the variance. Therefore, we can

compute the conditional probability P(B(k)|i) using the Gaussian

distribution equation described in Line 7. Then we calculate the

posterior probability P(i |B(k)) that represents the likelihood of the

motion class i given measurement B(k), using the Bayes principle

described in Line 8. P(j) is the prior probability of occurrence of

each motion class. We then normalize the probability P(i |B(k)) so

that
∑
j P(j |B(k)) = 1. A significance test is conducted by compar-

ing P(i |B(k)) with a threshold T to ensure sufficient confidence in

motion probability. We finally select the most likely motion class c

within the time windowW such that P(c |B(k)) has values greater

than T for the most number of time steps. The motion class c and

the corresponding tracking results {X c (1),X c (2), ...,X c (W )} will

be returned.

In Figure 6, sample motion classification results are shown. Be-

tween second 1 and 2.2, the driver is steering the wheel (S). Between

second 3.8 and 5, the driver is turning head rightwards (HR), and

between second 6.8 and 8.8, the driver is steering the car, and turns

head rightwards briefly at second 8 (HR+S). We can see that the

STC algorithm correctly recognizes the correct motions types by

raising the motion class likelihood to close to 1.

4 ROBUST MAGNETIC SENSING

Sensor Coordinate FrameRotation.During driving, the driver’s

left hand (with smartwatch) can move slightly without steering

due to car vibration or holding position change. When the sensor

rotates, the measurement changes accordingly. We address this
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Figure 6: Magnetic Sensor Measurements(Upper) and Mo-

tion Class Likelihood (Lower).

issue by rotating the magnetic sensor measurements based on the

gravity sensor measurement д = [дx ,дy ,дz ]
T . The pitch angle p

and roll angle r , and the estimate of rotation matrix Rt can be

computed as:

p = arctan(дy/

√
д2x + д

2
z ),

r = arctan(−дx /дz ),

Rt = R(Yw ,p) ∗ R(Xw , r ),

(10)

where R(Yw ,p) and R(Xw , r ) represent rotation operations around

axisYw andXw for angle p and r , respectively. The axesYw andXw
are illustrated in Figure 2a and the definition of rotation function

R(·, ·) is shown in Equation 1. With Rt , we calculate the rotated

magnetometer measurement BR = Rt ∗ B, which will be used in

right hand and head turn motion tracking.

Note that we haven’t accounted for the yaw angle variation in

the smartwatch, i.e., the rotation around vertical axis Zv in Figure

2a. Our observation is that when the driver is holding the steering

wheel, the yaw angle change of the watch is usually small enough

to ignore. When the driver takes the hand off the steering wheel,

we design an off-wheel detection algorithm to detect this situation

in the following sections.

Geomagnetic Field Reduction.When the car changes its moving

direction, the geomagnetic field influences the magnetometer mea-

surements. In Figure 7, we plot the magnetic sensor measurements

when the car has different orientations (measured by GPS, plotted

with thick orange dashed line). We can see that the horizontal com-

ponents of the geomagnetic field, i.e., bx and by , change according

to the moving directions, while the vertical component bz remains

stable. We reduce the influence of the geomagnetic field using the

following strategy. We measure the moving direction d of the car

using the GPS sensor on the smartphone. Then we estimate the

horizontal components of the geomagnetic field using the following

equation:

Bдeo (d) = |bh |



cos(d + δ )

sin(d + δ )

0


= R(Zv , δ )



cosd

sind

0


, (11)
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Figure 7: Geomagnetic Field Estimation.

where |bh | denotes the strength of the horizontal component of

the geomagnetic field, and δ represents the angle on the horizon-

tal plane between geomagnetic north and the geographic north.

R(Zv , δ ) represents the rotation around Zv (shown in Figure 2) for

angle δ . We estimate the matrix R(Zv , δ ) using linear regression as

follows. The car drives in different directions, which is achieved by

driving in a rectangle route. Using the GPS sensor, the ground truth

moving directions d1,d2, ...,dl are recorded. In the meanwhile, the

smartwatch magnetic sensor measurements b1,b2, ...,bl are also

recorded. Then a linear regression is used to find thematrixR(Zv , δ )

such that R(Zv , δ )[cos(di ), sin(di ), 0]
T ≈ [bix ,biy ,biz ]

T
,∀i .

Prediction results based on Equation 11 are the plotted with

dashed lines in Figure 7. We can see that the predictions (dashed

lines) closely follow the magnetometer measurements (thick lines).

We use this approach to remove the disturbance of the geomagnetic

field before estimating hand holding positions and head turn angles.

5 STEERING CONTROL MONITORING

Left Hand Position Tracking. As illustrated in Figure 2a, we

use α to represent the left hand holding position of the driver. We

set α = 0 when the driver is holding the 9 o’clock position. We

use the smartwatch inertia sensors to track left hand position on

the steering wheel. The Android wear provides an API to get an

estimate the direction of gravity in the smartwatch’s coordinate

frame, denoted by д, in real time. Then we use the polynomial

regression technique to derive the function f (·) such that дi =

fi (α), i = x,y, z. Then we estimate the steering wheel holding

position α with the gravity sensor measurements д = [дx ,дy ,дz ]
T

by solving the following optimization problem:

minimize :
α

J =
∑

i=x ,y,z
|дi − Hi (α)|

2
,

s .t . −60◦ ≤ α ≤ 120◦.
(12)

We use a standard convex optimization solver to compute the op-

timal value for α . We find that when the polynomial regression has

an order n greater than 3, we achieve a left hand tracking accuracy

of about 10◦. Once the system detects that the left hand holding

position is close to the 9 o’clock position, i.e., α ≈ 0, right hand and

head sensing algorithms will be invoked. We also test the robust-

ness of this algorithm against the acceleration and deceleration. We

record the sensor measurements while driving along roads with

speeds ranging from 0 to 55 miles per hour. We find that left hand

tracking is robust to ordinary car speed changes.
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Figure 8: Magnetometer Measurements with Different Man-

ual Activities.

Off-Wheel Detection. In the previous sections, we focus on driver

motion tracking when the driver is holding the steering wheel

with both hands. However, the driver can take the hands off the

steering wheel from time to time, either for ordinary activities

like controlling the radio or distracting activities such as texting.

Furthermore, it’s possible that the driver holds the steering wheel

using improper ways, such as one-hand hold or "fingertip" hold. In

this section, our goal is to design an algorithm to detect if either

hand is off the steering wheel, or if an improper steering wheel

holding technique is used.

We use the smartwatch’s magnetometer, gravity sensor, and

accelerometer measurements within a time window to conduct

off-wheel detection. The first feature we use is the mean of the

magnetometer measurements within the time window. When the

driver takes either hand off the steering wheel, the magnetometer

measurements change accordingly because the relative position and

orientation between the magnetic tag and the smartwatch change.

When the driver conducts different activities using either hand, the

smartwatch magnetic sensing measurements are plotted in Figure 8.

We can see that the sensor measurements for different activities

form distinguishable clusters.

The second feature is the mean of the gravity sensor measure-

ments within a time window. We design the third detection feature

based on the linear accelerometer, which can recognize the vertical

motions when the driver takes the hand off the steering wheel. Lin-

ear acceleration, which is defined as the gross acceleration subtract-

ing the gravity, is denoted by a(t). To obtain the acceleration along

the vertical direction, we take the dot product between a(t) and the

gravity sensor measurement д(t), i.e., aver t = a(t) ·д(t)/|д(t)|. The

third feature is defined as the variance of aver t within the time

window.

To simplify the training process, we select the one-class Support

Vector Machine (SVM) algorithm [68]. A one-class SVM classifier

is trained using data generated by the sensing models for the two

hands and the head. After training, the algorithm compares features

from new sensor measurements with the training data. If the new

features are too different, the algorithm declares it to be out of

class, which indicates abnormal steering wheel holding or off-wheel

motions. Specifically, we iterate through all the normal possible

motion states of the hand and head, i.e., θ1, θ2, for hand holding on

the steering wheel; and γ for different head turn directions. Using

the magnetic sensor measurement models H s () and H i (), i = l, r ,d ,

we compute the magnetic field distributions for normal driving. In



the same way, we compute the distribution of the normal gravity

sensor measurements using the gravity sensor measurement model

described earlier in this section. Using these generated normal

sensor data, we train the one-class SVM classifier, which is then

used for off-wheel detection.

6 SAFE DRIVING MONITORING
APPLICATION DESIGN

We will present the safe driving monitoring applications including

(1) manual/visual distraction, (2) Steering wheel control technique,

(3) lane changing/turning, and (4) fatigue motion detection. The

workflow of MagTrack goes as follows. After collecting sensor data

for a short time windowW , the off-wheel detection algorithm is

executed to detect whether either hand of the driver is not holding

the steering wheel. If the driver is holding the steering wheel with

both hands, then using the smartwatch onboard accelerometer and

gyroscope, the left hand tracking algorithm is executed, and any

steering motions are recorded. If the left hand is not steering the

wheel, then the Simultaneous Tracking and Classification algorithm

is executed to track both the right hand positions on the steering

wheel and the head turn angles. The bimanual motions on the

steering wheel, head turn angles, and off-wheel detection results

are recorded in an event log, which is used to detect various unsafe

behaviors.

Manual Distraction Detection. During driving, the driver

should spend most of their time holding the steering wheel with

both hands, except for short activities such as adjusting AC or

switching radio stations. During each time intervalW , MagTrack

will firstly detect manual distractions using the algorithm described

in Section 5. A manual distraction alert is issued if the driver spends

more than Tf (typically 5) seconds with a hand off the steering

wheel.

Bimanual Steering Control Monitoring. Steering Technique

Recognition: The National Highway Traffic Safety Administration

(NHTSA) recommends the push/pull steering technique [32, 37,

42, 43]. The major benefit is its ability to avoid injuries caused

by airbag explosions in car accidents, while still maintaining the

steering speed and flexibility. In the push/pull steering process, a

driver uses one hand to push up the wheel, the other to slide up,

grasp the wheel, and pull down to turn. The driver should hold the

area of the steering wheel between 11 and 8 o’clock with their left

hand and between 1 and 4 o’clock with their right hand regardless of

the direction of the turn. Other steering techniques, such as hand-

over-hand and single hand steering, should be used only when

the car is moving slowly [43]. When using the hand-over-hand

steering technique, the driver starts with hands at 9 and 3 o’clock.

Depending on the direction the driver is turning, one hand will

push the wheel up, while the other hand will let go, reach across

the other arm, grasp the wheel and pull up.

MagTrack differentiates these steering techniques using the hand

tracking algorithm described in Section 5. In this algorithm, the

real-time hand positions for the left and right hand, represented

by α and θ1, are computed. When the driver is using the push/pull

steering technique, the values of α and θ1 are changing within

the range (−30◦, 60◦). Otherwise, α and θ1 are within (−30
◦
, 180◦)

if the driver is using the hand-over-hand technique. Therefore,

MagTrack detects the hand-over-hand technique by comparing α

Figure 9: Some Steering Wheel Holding Techniques.

and θ1 with thresholds. When the hand positions have large values,

the hand-over-hand technique is detected. Otherwise, the push/pull

technique is detected.

SteeringWheel Holding Style Detection: NHTSA recommends that

the drivers put their hands at the 3 and 9 o’clock positions [1, 43].

This is illustrated in the leftmost graph of Figure 9. Some other

holding techniques, such as 2-10 o’clock or 4-8 o’clock holding

(third and fourth in Figure 9), are detected by tracking the driver’s

bimanual positions, which are described in Section 5 and Section 3.

Other improper holding styles, such as single-hand holding (second

figure in Figure 9) and holding the wheel from the inner ring (fifth

figure in Figure 9), will be detected by the off-wheel detection

algorithm. If the driver maintains incorrect steering wheel control

for a period longer than a threshold, then an alert will be sent to

the driver.

Visual Distraction Detection. If the driver is detected to be

holding the steering wheel with both hands, the head motions will

be monitored using the algorithm described in Section 3.2. If the

driver turns their head for a period longer than Th (typically 5)

seconds, then a visual distraction event is detected and an alert will

be sent to the driver. If the driver turns back within Th seconds, it

indicates that the driver is observing the blind spots or side mirrors,

and this information will be recorded and used in safe lane changing

monitoring.

Safe Turning/Lane Changing. The driver needs to switch on

the turn signal to notify the nearby vehicles and turn their head to

observe the blind spots before steering the vehicle for a lane change

or at an intersection for safety. MagTrack continuously monitors

head turns using the algorithm described in Section 3.2. It also

detects turn signals by monitoring the turn signal sounds using the

matched filter [9]. When steering is detected, MagTrack checks the

record for the previousW seconds. If either a head turn event or

a turn signal event is missing, it will send an unsafe turning /lane

changing alert to the driver.

When driving on a curvy road, the driver needs to frequently

maneuver the steering wheel in motions similar to lane chang-

ing. We resolve this problem by using GPS on the smartphone to

recognize the curvy roads. MagTrack will temporarily disable the

turning/lane changing monitoring module to reduce false alarms.

Fatigue Motion Detection. Using MagTrack, we detect two

types of motion, the head nodding [25, 30, 48, 51] and aggressive

steering [19, 56], that are associated with drowsy driving. Using

the algorithm described in Section 3.2, we detect the head nodding

motions (head down turn). If the driver nods their head frequently,

then it is likely the driver is drowsy and not safe. MagTrack com-

pares the time interval between two consecutive head nods to a

threshold Td , and alerts the driver if the interval is smaller than Td .

Guided by previous research on drowsy driving monitoring [25],

we set the value of Td to be 5 seconds.

The rapid steering wheel movements are also shown to be cor-

related with fatigue driving [56]. Based on the left hand position

tracking results, we estimate the rotation rate. If the rotation rate
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Figure 10: Driving Motion Type Confusion Matrix

exceeds Tr , then an alert will be sent to the driver. Based on [56],

we set Tr to be 125 degrees/second.

7 EVALUATION

7.1 Driving Motion Recognition

Driving Motion Recognition Confusion Matrix.We first eval-

uate the motion classification performance of MagTrack. While

driving slowly in a vacant parking lot, the driver conducts various

driving motions, including off wheel (OW) motions (e.g., eating,

controlling radio, texting, etc), steering using left hand (LS), steer-

ing using right hand (RS), head nodding (HD), head left turn (HL),

head right turn (HR), and concurrent right hand steering and head

turn (S+H). The recognition results are shown in Figure 10.

Overall, MagTrack can differentiate these driving motions accu-

rately with the recognition accuracies around 0.9 or more for most

types. The detection precision for concurrent right hand steering

and head turn (S+H) is relatively high at 0.88. Closer examination

of the algorithm reveals that the motion likelihood for S+H remains

low when either the hand or the head is moving. This shows that

by limiting the ranges of the state variables, we can ensure that the

concurrent motion Kalman filter is activated only when both tags

have large motions. Sometimes the concurrent motion Kalman filter

can’t track the motions accurately due to the large search space

(three independent variables in the state vector). In these cases, the

algorithm will falsely assign higher likelihood values to the right

hand steering motion type, causing a 12% false detection rate.

In the experiments, RS get confused with HR from time to time.

Specifically, 3% of RS are falsely recognized as HR, while 7% of HR

are recognized as RS. A closer look at the sensing results shows that

there are similarities between the magnetic field changes during

right hand steering (RS) and head right turns (HR), especially when

the right steering angle is small. To mitigate this problem, when

conducting steering monitoring in the driving activity recognition,

we design the algorithm to rely on tracking results for both left and

right hands. Since the tracking for each hand uses different sensors

(accelerometer and gyroscope for the left hand, and magnetometer

for the right hand), the overall steering detection accuracy is higher

than the motion tracking when only one sensor is used.

The head turn motion monitoring is relatively accurate. We

achieved 97%, 97%, and 92% of detection precision for the three

head turn directions: down, left and right, respectively.
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Figure 11: Motion Type Classification Robustness

Driving Motion Recognition Robustness. To test the robust-

ness of the motion classification algorithm, we test the algorithm

under different settings. We firstly test the performance when the

left hand holding position α is 0◦ (9 o’clock), 30◦ (10 o’clock) and

−30◦ (8 o’clock), and motion classification precision results are

shown in Figure 11a. The recognition precision for the head turn

motions, i.e., HD, HL, and HR, remains almost unchanged. This

shows that the sensor measurement rotation algorithm described

in Section 4 effectively reduces the impact of sensor orientation

changes caused in holding position variation. However, RS detec-

tion accuracy degrades when the driver holds 30 or -30 degree

positions. The reason is that the change of relative positions influ-

ences the sensor measurement model when the holding position

changes. In this work, we focus on the cases when the driver holds

the steering wheel at the 3-9 o’clock positions during driving. To

adapt to other steering wheel holding style, such as 2-10 o’clock

holding positions, we need to adjust the sensor measurement model

parameters using the calibration process described in Section 3.1.

We also test the system robustness by dividing the car mov-

ing directions into four categories based on corresponding GPS

data. Shown in Figure 11b, MagTrack maintains similar motion

recognition accuracy regardless of the car’s moving direction, prov-

ing the effectiveness of the geomagnetic field reduction algorithm

described in Section 4.

The vehicle itself also generates a magnetic field during their

operations [49]. For example, in our experiments, we found that

braking generates a magnetic field of about 5 µT on the smartwatch

magnetometer. To test its impact, we collected 10 data segments

with braking, and ran the MagTrack algorithm on them. The re-

sults showed that the changes of MagTrack tracking angles due to

braking were small, and no false alarms were created.

7.2 Unsafe Driving Activity Detection

Dataset. The dataset contains two parts: the controlled driving and

the uncontrolled free driving datasets. We collect the controlled

driving data on vacant roads and parking lots. A co-pilot observes

surroundings to ensure the emptiness of the roads, then the driving

and data collection begin. The co-pilot records labels and starting

time of the driver’s driving behaviors into the dataset. The exper-

iments are conducted in eight cars of the following models: Ford

Fusion, Honda Civic, Toyota RAV4, Honda Accord, Ford Focus, and

Nissan Altima. We have recruited 10 volunteers, and each conducts

the following unsafe driving activities multiple times: turning/lane

changing without head turns or turn signal, turning with incorrect

steering techniques, and visual distractions. To collect safe driving

data, the drivers also conduct safe turning/lane changing, where the

drivers observe blind spots and switch on the turn signals before



Events # TP # FP # GT PR RC

Unsafe Turn,

Lane Change
84 13 100 0.87 0.84

Incorrect

Steering Control
88 7 95 0.92 0.92

Manual

Distraction
131 11 148 0.92 0.89

Visual

Distraction
105 19 116 0.85 0.91

Fatigue Driving

Motions
85 11 88 0.88 0.96

Overall 547 0.87 0.90

Table 1: Unsafe Driving Activity Detection Result

steering the wheel using the correct technique. For the manual dis-

traction data, the drivers conduct six types of distraction activities,

including controlling the radio, texting, eating, one-handed driving

with either left or right hand for 2 minutes each. For fatigue driving

data, the drivers either nod head frequently, or steer wheel quickly

for a short period of time. In total, we have collected 500+ instances

of unsafe driving data.

We collect uncontrolled data when the drivers are driving with

regular traffic. The drivers are asked to focus on safety so that only

a few incorrect driving behaviors are recorded. A co-pilot collects

ground truth of the driver’s wheel holding positions, steering tech-

niques and head turns. In total, we have more than 250 minutes of

uncontrolled driving data for system evaluation.

Overall Detection Results. Table 1 provides the detection preci-

sion (PR) and recall rate (RC) for the tested unsafe driving scenarios,

which includes both the normal driving dataset and the controlled

unsafe driving dataset. PR is defined as TP/(TP + FP), and RC is

defined as TP/(TP + FN ), where TP represents True Positive, FP

represents False Positive, and FN represents False Negative. Overall,

there are 547 instances of Ground Truth (GT) unsafe driving events.

MagTrack detects these events with a precision of 0.87 and a recall

rate of 0.90, respectively.

We can also see that the detection precision and recall rate for

unsafe turn/lane changing are 0.87 and 0.84, respectively. This

shows the feasibility for MagTrack to synthesize the information

from hand tracking, head turn monitoring and turn signal detection

modules effectively in order to monitor the entire process of turning

and lane changing.

The detection precision and the recall rate for incorrect steering

technique are both 0.92. One source of error is the driver’s complex

variations in the steering technique on the road. For example, when

steering with the push/pull technique, the driver sometimes steers

the wheel with asymmetric motions, with one hand moving with

a larger angle and the other with a smaller one. In these cases,

MagTrack detects large hand holding position changes and tends

to falsely predict a hand-over-hand technique. One way to address

this issue is to include more types of steering techniques into the

system with details of corresponding motions. In this work, we

focus on the recognition of two popular steering techniques.

The detection precision of manual distraction detection is 0.92,

and the recall rate is 0.89. One major source of errors is that Mag-

Track sometimes confuses manual distractions with some low hold-

ing positions, because the magnetic fields at the magnetometer in
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Figure 12: Detection Accuracy for Individual Users

both cases are weak. This can be improved if we use a stronger

magnet on the hand.

The visual distraction detection algorithm has a recall rate of 0.91,

meaning that most visual distractions are detected. This demon-

strates the smartwatchmagnetometer’s high sensitivity in detecting

head motions. However, precision is lower at 0.85. The main reason

is that several other types of head motions are not recognized by

MagTrack during driving. For example, when viewing the rear mir-

rors, the driver can lower his or her head and have small back-forth

head motions. On uneven roads, the driver’s head and hand can

have up-down vibrations. To mitigate these false alarms, we can

explore additional head motion models in the future, so that mo-

tions other than head left, right and down turns can be recognized

by the system. Furthermore, the algorithm sometimes confuses the

head turn motions with steering motions, which can also cause

false detection.

Our algorithm achieves a high recall rate of 0.96 to detect fatigue

driving motions. This is partly because of the reliability to detect

head nodding motions. We find that head nodding can create strong

and distinguishable patterns in the magnetic sensor measurements.

In addition, the aggressive steering detection based on smartwatch

IMUs is also robust and accurate. However, a few false alarms are de-

tected because MagTrack confuses normal steering with aggressive

steering. False alarms happen more often if the driver steers with

the hand-over-hand technique. The rotation rate of the steering

wheel is high so that MagTrack sometimes falsely recognizes it as

aggressive steering motions.

Comparison Against Camera-based Solution. We road-tested

a few mobile camera-based driver monitoring apps, including Driv-

elert, Sleepiness Warning, DriveAwake, Driver Fatigue, and Fatigue

and Eye Blink Detection. These apps did not work in dark environ-

ments, e.g., driving at night, because they have difficulty capturing

useful photos under low-light conditions.

In terms of detection accuracy, we compared a recent system that

uses a camera to monitor the driver’s head turns [3]. This solution

achieved an accuracy of 97.5% in differentiating down, front, and up

head turns, and 98.2% in differentiating left, front, and right head

turns. MagTrack achieves 98% accuracy in detecting different head

poses: front, left, right, and down head turn motions.

Detection Accuracy for Individual Users. We further analyze

the unsafe activity detection accuracy for each driver, and the re-

sults are shown in Figure 12. We can see that although individual

variations exist, MagTrack can maintain an overall accurate detec-

tion performance. Among different drivers, the detection precision



ranges from 0.82 to 0.96, while the detection recall rate ranges from

0.86 to 0.98.

7.3 Energy Consumption

MagTrack is implemented and tested on Android Wear. The ap-

plication level functions of MagTrack are running on the driver’s

smartphone, while sensing, signal processing, and motion tracking

functions are executed on the smartwatch. Specifically, MagTrack

continuously collects the uncalibrated magnetic sensor and grav-

ity sensor data at 50Hz, then conducts the simultaneous tracking

and classification algorithm to recognize driving motions on the

smartwatch.

We tested the battery life of the smartwatch using three fully

charged Samsung Gear Live smartwatches and recorded the remain-

ing battery life after 1, 3, and 6 hours. On average, the remaining

battery life is 93%, 78%, and 62%, respectively. We project that the

battery life drops about 7% every hour, and the total battery life

is about 14 hours. In comparison, the battery life drops around 1%

when the watch is idle. We note a more sophisticated implemen-

tation with adaptive sampling rates may significantly reduce the

energy consumption of MagTrack.

7.4 User Study

We conducted a user study on all 10 volunteers about the experience

of using MagTrack. 3 users felt the added magnetic tags are heavy,

while others felt OK about the additional weight. Some volunteers

suggested that the hand magnet can be attached on a glove or a

bracelet/wristband, and the head magnet can be attached to a cap

because they used these accessories anyway.

8 DISCUSSION

8.1 Multi-wearable Designs and Applications.

As wearable sensing and computing technologies become mature,

activity tracking using multiple wearables or tags is not new. There

are research prototypes ranging from body sensor networks to med-

ical IoT [5, 14, 21, 24, 28, 41] and to commercially available prod-

ucts [8, 17, 31] for a wide range of applications, including health

monitoring, sports, entertainment, and scientific explorations. For

safety-critical applications like law enforcement and firefighting,

wearables also show a promising future [17, 76]. In terms of driving

applications, there are ear-worn head nodding detectors [4]. Partic-

ularly, previous work [7] used two smartwatches and a smartphone

to monitor manual distractions. Compared to such multi-wearable

designs, our system has three unique advantages: first, the magnetic

tags are low cost and they don’t require battery recharge. Second,

MagTrack only needs one magnetometer to track multiple tags, the

system is simple and efficient. Third, wearable magnetic tags have

the potential to become more user-friendly and non-intrusive.

We demonstrated several types of wearable magnetic tags in

Figure 13. These proof of concept designs are preliminary and

have space to improve. First, smaller but stronger magnets can be

used. With Neodymium-Iron-Boron magnets of stronger grades,

MagTrack will achieve the same tracking accuracy with a smaller

magnet. Second, more sensitive magnetic sensors may improve the

sensing range and accuracy as well.

(a) Wrist Band (b) Ring (c) Glove

(d) Hat (e) Head Band (f) Eye-glass

Figure 13: Sample Magnetic Wearable Designs

Many people can benefit from our design. For example, driving

couches can use MagTrack to train and improve behaviors for new

drivers [15, 61]; insurance companies can use MagTrack to monitor

driving habits in order to achieve more accurate risk assessment and

insurance premium adjustment [52]. Furthermore, many drivers

with special needs can benefit from MagTrack. Research show

distraction detection systems can improve safety for drivers with

Attention Deficit and Hypoactivity Disorder (ADHD) [55, 61]. The

system can also help night commuters and long-distance truck

drivers by alerting fatigue driving motions including head nodding

and sudden aggressive steering.

Novel Applications. Besides driving monitoring, MagTrack can

be used to monitor a class of activities where coordinated bimanual

and head motions are involved. Existing monitoring systems are

often limited because they rely on a single smartwatch, which

can only monitor one hand. For example, doctors have been using

smartwatches to monitor eating activities for patients with diabetes

and heart diseases in order to control food intake [40, 77]. An

existing system has demonstrated good recognition accuracy [57],

but it is limited to monitoring eating with a single hand, and it

cannot monitor eating activities that involve the other hand, such

as eating with a fork and knife. MagTrack can monitor bimanual

eating gestures by attaching additional magnetic tags to the other

hand. In addition, head gestures during eating can also be captured,

which can help distinguishing eating from other activities at the

dining table.

Similarly, existing hand washing monitoring systems also suffer

from a lack of bimanual motion monitoring. Systems that use a

single smartwatch are insufficient in achieving highly accurate

hand washing monitoring [65]. While using two smartwatches can

improve monitoring accuracy, it introduces high cost to the users

[20]. MagTrack can be used to monitor bimanual hand washing

motions, with only one additional low-cost magnetic tag.

There are many other medical applications that involve coordi-

nated bimanual and head motions that can potentially benefit from

MagTrack, such as hand-eye coordination skill assessment [63],

which helps to detect development disorders in young children and

to detect cognitive ability degeneration in elderly people. Another

example is the monitoring of wrist injury recovery exercises [45],

which involve well-defined motions of the user’s wrist joint.

8.2 Lesson Learned

DrivingContext Integration.MagTrack is able tomonitor a wide

range of unsafe driving behaviors. However, it does not cover some



other factors associatedwith driving risks, such as car speed, sudden

acceleration or braking, weather, traffic and road conditions. These

factors can be integrated into MagTrack, if such information is

available in real-time.

We will explore adding new safe driving monitoring scenarios by

including different driving contexts. For example, by combining the

driving speed context with the steering wheel control monitoring,

MagTrack can detect aggressive driving. By combining the in-car

conversation context [35] with head turn monitoring, distractions

due to conversations can be better detected.

UserVariations. Every driver has a personal sitting posture, height,

and steering wheel holding habits, etc. MagTrack can be calibrated

based on these factors. Specifically, we have observed that the posi-

tion of the smartwatch on the user’s wrist is an important factor,

as well as the driver’s sitting posture. The distance between the

head magnet and the smartwatch also matters. Therefore, we esti-

mate these factors for each driver and calibrate the sensing models

accordingly.

MagTrack has been tested for right-handed drivers. However,

MagTrack can still work if the driver is left-handed and prefers to

wear a smartwatch on the right hand. The driver just needs to put

the magnetic tag on the left hand. In the US, the radio, transmission

gear, cup holder, etc are all on the right hand side of the driver.

Therefore, wearing a smartwatch on the right hand actually makes

tracking easier, because we can take advantages of IMU sensors on

the smartwatch to track right hand activities more accurately.

9 STATE OF THE ART
Driving Monitoring: Cameras have been used to monitor the dri-

ver’s head motions, enabling drowsy driving and visual distraction

detection [27, 36, 59, 66, 71, 73]. There are a few advantages of cam-

era systems over MagTrack: they do not require wearables on the

users, and the eyelid movements can be recognized. However, Mag-

Track provides its unique benefits. Firstly, MagTrack works under

low-light and all weather conditions when cameras have difficulty

capturing images [9]. Secondly, some people have privacy concerns

about camera-based solutions. There is a trade-off between safety

and convenience in terms of safe driving monitoring. Although

some users feel the need for wearing devices burdensome, others

are more open to additional gadgets, which is demonstrated by the

popularity of wearable driving monitoring devices on the market

[4, 39, 50, 62, 64].

Earlier inertia-sensor-based safe driving monitoring systems

mainly focus on monitoring car motion dynamics and can alert

abnormal vehicle movements, such as aggressive acceleration or

turning [9, 38, 72, 74, 75]. However, they often leave insufficient

time for the drivers to respond to complex road situations, especially

when the drivers are distracted. Using the battery-free magnetic

tags and smartwatch sensors, MagTrack enables early detection of

dangerous driving behaviors, including distracted driving, unsafe

lane changing/turning, and incorrect steering techniques.

Fatigue driving detection is an ongoing research problem, and

many techniques have been used trying to solve it, including eyelid

closure detection [73], head nodding detection [25, 30, 48, 51], ag-

gressive steering detection [19, 56], abnormal ECG and respiratory

patterns detection, etc. Eyelid closure detection systems are pop-

ular, but they have poor performance under low-light conditions.

Furthermore, studies show that many micro-sleeps during driving

occur with the driver’s eyes open [13]. Some systems rely on head

nodding detection using different sensors, such as specialized ca-

pacitive sensors [30], and IMU sensors worn on the head [4, 39]. In

comparison, MagTrack detects head nodding motions with only a

low cost magnetic tag on the head and a smartwatch on the wrist,

and yet achieves high accuracy. MagTrack also detects aggressive

steering motions that can indicate fatigue driving.

Simultaneous Tracking and Classification: STC was initially

proposed to solve the target tracking and classification in the radar

monitoring scenario [26, 46, 47, 53]. The basic idea is to use the

special feature metrics to infer the target type. For example, it is

possible to infer the aircraft model based on its flight speed and

acceleration [47]. However, in our problem setting, sometimes the

two magnetic tags move at the same time, which poses a new and

unique challenge. To address this problem, we define additional

łvirtualž motion types that represent the concurrent motions of

the two magnetic tags, and use the STC framework to detect such

concurrent types based on the corresponding sensor measurement

patterns.

Magnetic Sensing: The free motions of each magnetic tag have 6

degrees of freedom: 3 degrees of position and 3 degrees of orien-

tation. Previous research typically require at least two 3-axis mag-

netometers to track each free-moving magnet [10, 12, 16, 23, 60].

On the other hand, a single magnetometer can obtain a qualitative

description of the magnetic field, such as the transportation states

[11, 54]. Our case, where only one magnetometer is used to track

two magnetic tags, is different from all these works. Our perspec-

tive is that the driving motions have constraints: the hands are

constrained to the steering wheel, while the head is constrained

by the car seat. We analyze the hand and head motion constraints,

and construct detailed motion and sensing models, then use the

Kalman filtering algorithms to track motions with high accuracy.

10 CONCLUSION

We built MagTrack that can reliably monitor both a driver’s biman-

ual and head motions in real-time. Compared to existing solutions,

MagTrack has four major benefits: 1) it uses battery-free low-cost

magnetic accessories for active tracking, and our system is robust

against different types of vehicles and environmental settings; 2)

a novel sensing algorithm can track two tags with only a single

magnetometer on a smartwatch, because each tag has its unique

motion patterns and constraints; 3) the tracking results of hand and

head motions can be used in learning based algorithms to detect a

wide range of unsafe driving activities, including manual and visual

distractions, incorrect steering techniques, and unsafe turning and

lane changing; 4) it achieves high monitoring accuracy. In 500+

minutes road tests with 500+ instances of driving activities and 10

participants, MagTrack detects unsafe driving activities with 87%

of precision and 90% of recall rate, demonstrating the potential of

magnetic wearables based activity recognition.
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